Neuronal activation increases the density of eukaryotic translation initiation factor 4E mRNA clusters in dendrites of cultured hippocampal neurons.

نویسندگان

  • Il Soo Moon
  • Sun-Jung Cho
  • Dae-Hyun Seog
  • Randall Walikonis
چکیده

Activity-dependent dendritic translation in CNS neurons is important for the synapse-specific provision of proteins that may be necessary for strengthening of synaptic connections. A major rate-limiting factor during protein synthesis is the availability of eukaryotic translation initiation factor 4E (eIF4E), an mRNA 5-cap-binding protein. In this study we show by fluorescence in situ hybridization (FISH) that the mRNA for eIF4E is present in the dendrites of cultured rat hippocampal neurons. Under basal culture conditions, 58.7 +/-11.6% of the eIF4E mRNA clusters localize with or immediately adjacent to PSD-95 clusters. Neuronal activation with KCl (60 mM, 10 min) very significantly increases the number of eIF4E mRNA clusters in dendrites by 50.1 and 74.5% at 2 and 6 h after treatment, respectively. In addition, the proportion of eIF4E mRNA clusters that localize with PSD-95 increases to 74.4+/-7.7% and 77.8+/-7.6% of the eIF4E clusters at 2 and 6 h after KCl treatment, respectively. Our results demonstrate the presence of eIF4E mRNA in dendrites and an activity-dependent increase of these clusters at synaptic sites. This provides a potential mechanism by which protein translation at synapses may be enhanced in response to synaptic stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic eIF4E-binding Protein 1 (eIF4E-BP1) mRNA Is Upregulated by Neuronal Activation

Long-term synaptic plasticity requires addition of new proteins at the synaptic site. The local protein synthesis at subsynaptic sites confers advantageous mechanisms that would regulate the protein composition in local domains on a moment-by-moment basis. However, our information on the identities of 'dendritic' mRNAs is very limited. In this study we investigated the expression of the protein...

متن کامل

BDNF induces translocation of initiation factor 4E to mRNA granules: evidence for a role of synaptic microfilaments and integrins.

In many cell types, translation can be regulated by a redistribution of translation initiation factors to actin-based cytoskeletal compartments that contain bound mRNAs. This process is evoked by extracellular signals and is regulated by determinants of cytoskeletal organization, such as integrins. In the present experiments, we provide evidence that similar mechanisms regulate local translatio...

متن کامل

The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP

Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is st...

متن کامل

Multiple mRNAs encode the murine translation initiation factor eIF-4E.

All eukaryotic cellular mRNAs (except organellar) possess at their 5' end the structure m7GpppX (where X is any nucleotide) termed the "cap." The cap structure facilitates the melting of mRNA 5' secondary structure through the action of initiation factor-4F (eIF-4F) in conjunction with eIF-4B. eIF-4F consists of three subunits of which one, eIF-4E (eIF-4E has recently been designated eIF-4 alph...

متن کامل

A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus.

Many forms of long-lasting behavioral and synaptic plasticity require the synthesis of new proteins. For example, long-term potentiation (LTP) that endures for more than an hour requires both transcription and translation. The signal-transduction mechanisms that couple synaptic events to protein translational machinery during long-lasting synaptic plasticity, however, are not well understood. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental & molecular medicine

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2009